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Figure 5.2 Phase-response curves: variation of the steady-state response phase
with respect to the excitation frequency for different values of the damping ratio.

5.3 Amplitude and phase responses of the Duffing
oscillator

In the previous section, the notions of slow and fast timescales, resonance, and secular
terms were introduced. The addition of the nonlinear term y? to the simple harmonic
oscillator — leading to the Duffing oscillator dramatically changes the picture. The
principle of linear superposition can no longer be used to obtain the forced response of
the linear system. In addition, the steady-state response depends on the initial
conditions unlike that of the linear system where the steady-state response is
independent of the chosen initial conditions. The maximum response also does not
occur close to the system natural frequency as in the linear system. Due to the cubic
nonlinearity, the system can experience resonances even when the excitation fre-
quency is away from the natural frequency of the system. As the damped, forced
nonlinear oscillator does not permit a closed-form solution, analytical approxima-
tions are sought for the forced response through perturbation analysis, as discussed in
Chapter 4. The complexity of the response of the forced nonlinear oscillator is
explored in the rest of this chapter.

Recognising the importance of the amplitude and phase responses of the linear
oscillator, the same information is sought for the forced Duffing oscillator

J4+20y+y+7y = FcosQt (5.3.1)

As there is no closed form solution for Equation (5.3.1), perturbation analysis is
used to determine an analytical approximation for the forced response, assuming
that the system has weak nonlinearity and weak damping. The goal of this exercise
is to understand the influence of nonlinearity and compare the behaviour of the
forced nonlinear system with that of the forced linear system, whose behaviour was
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discussed in the previous section. To facilitate the nonlinear analysis, a small
parameter ¢ < 1, is introduced as an asymptotic ordering parameter and the
damping and nonlinear terms are written, respectively, as { = &{ and y = &}, where
{ and 7 are O(1) quantities. With this rescaling, the unforced oscillator takes the
following form:

+y+e2ly+7y’) =0 (5.3.2)

Examining Equation (5.3.2), itis clear thatitis a perturbation of the corresponding
undamped and unforced linear oscillator. In order to focus on the system response
during a resonance excitation, a weak or soft forcing F = ¢F, where F is O(1) is also
assumed.

With the assumptions of weak damping, weak nonlinearity, and weak forcing,
Equation (5.3.1) can be rewritten as

J+y+e2ly+7y") = eFcosQt (5.3.3)

To find the different resonances possible in the system, a straightforward expansion of
the following form is carried out:

y(t) = eyi () + e (t) + ... (5.3.4)

The expansion (5.3.4) is an example of a Poincaré asymptotic series. On substituting
Equation (5.3.4) into Equation (5.3.3), collecting terms of the same order, and solving
the differential systems that correspond to the orders O(¢) and O(a2 ), it is found that
small divisor terms occur in the particular response at O(¢) when

Q=~1 (5.3.5a)
and at O(¢?) when

Q~1/3 or Q=3 (5.3.5b)

Based on the order at which the small divisor terms occur, Equation (5.3.5a) is said to
describe a primary resonance while conditions (5.3.5b) are said to describe secondary
resonances. While the primary resonance is identical to the resonance relation
observed in the corresponding linear system, the secondary resonances are particular
to the nonlinear system. These resonances are also referred to as nonlinear resonances.
The resonance associated with the case, where the system is forced close to 1/3 of the
system natural frequency, is called a superharmonic resonance, while the resonance
associated with the case, where the system is forced close to 3 times the system natural
frequency, is called a subharmonic resonance.

5.3.1 Primary resonance

Next, the system response during the resonance excitation, Q = 1, is considered. The
proximity of the excitation frequency to the system natural frequency is expressed as

Q=1+¢0 (5.3.6)
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where ¢ is called the detuning parameter, which is a measure of how close the
excitation frequency is to the natural frequency. With the assumptions of weak
damping, weak nonlinearity, and weak forcing close to the system natural frequency,
Equation (5.3.1) is rewritten as

+y+e2{y+7y*) = eFcos((1 + o)1) (5.3.7)

Noting that the steady-state solution for the forced linear oscillator is acos(Qz + ¢)
(see Equation (5.2.7), for small ¢, an analytical approximation for Equation (5.3.7) is
assumed to have the form

y(t) = a(t)cos(Qt + ¢ (1)) + O(¢) (5.3.8)

where the amplitude @ and phase ¢ are slowly varying quantities. This analytical
approximation is an example of a generalised asymptotic series, as the coefficients are
also functions of the asymptotic ordering parameter, which is ¢ in this case. Such
analytical approximations can be constructed by using the method of multiple scales
or the method of averaging [8,9]. This construction is illustrated here by using the
method of multiple scales. Let

y(t; &) = yo(To, T1) +ey1(To, T1) + ... (53.9)
where the fast timescale Ty and slow timescale T are given by
To=t T, =c¢t (5310a,b)

With the introduction of the timescales, the time derivative with respect to time 7 is
transformed as

d o 9
G o T ar = Dot (5.3.11)

After substituting Equation (5.3.9) into Equation (5.3.7) and noting Equations
(5.3.10a,b) and (5.3.11), the following hierarchy of equations can be obtained for
O(1) and O(e), respectively.
D} =0

0o+ Yo ’ , T (5.3.12ab)
Diyi+y1 = —2DyDiyy —2{Dgyo — 7y, + Fcos(Ty+oT)

Then, the solution for the first component of the series (5.3.9) can be written as
yo(To, T1) = A(T))e™ +A"(T})e 7™ (5.3.13)

where j = v/—1, A(T}) is a complex valued amplitude function, and * indicates a
complex conjugate of that quantity. On substituting Equation (5.3.13) into
Equation (5.3.12b), the result is

_ . o F o
Diy; +y1 = —j(2A" +20A) T —35A%A" /0 A3 P30 EeJTOeﬂ’T' +cc. (5.3.14)



THE DUFFING EQUATION 147

where the prime indicates a time derivative with respect to the slow time 7 and c.c.
indicates the complex conjugate of the preceding terms. On setting the source of the
secular terms to zero in Equation (5.3.14), the result is

- . F .
—j(2A” +20A)—37A%A +§e’”T‘ =0 (5.3.15)
Introducing the polar form of the complex amplitude
1 A
A(T)) = za(Tl)e’ﬁ(T‘) (5.3.16)

where the amplitude a(7;) and the angle [(T,) are real-valued quantities, into
Equation (5.3.15), separating the real and imaginary parts, and introducing the phase
¢(Ty) = —(oT;—p) leads to

- F
d= —g“a—EsinqS,

" 3-43 . FCOS¢ (5.3.17a,b)
ap =—|oca—< =

8 T2

These equations, which describe the slow time evolutions of the amplitude and phase,
are referred to as the modulation equations, slow-flow equations or averaged
equations. The fixed points of Equation (5.3.17a,b) correspond to solutions with
constant amplitude and phase. These solutions satisfy

- F
la+ Esin(z’) =0,

- (5.3.18a,b)
oa— E"_a3 + Ecosq’) =0
g/ 72
or equivalently,
F -
Esin(p = —(a,
(5.3.19a,b)

F 3
Ecosqﬁ =—a (a— §W2>

Squaring and adding the equations in (5.3.19a,b) yields the frequency-response
equation (amplitude—frequency equation)

2
F =44 (Zz + (o—%?cﬂ) ) (5.3.20)

With this, the amplitude response (magnification factor) can be obtained as

M= _ ! (5.3.21)

2,/8 + (6-37a2)°
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Figure 5.3 Amplitude-response curves for a varying strength of nonlinearities y
(from left to right). The parameter values used to construct these response curves are
F=03,{=0.1and ¢=0.2.

In Figure 5.3 the amplitude-response curves for nonlinearities of different
strengths 7 are shown. Unlike the amplitude response in the linear case, the amplitude
response in the nonlinear case can be multivalued. For negative values of 7, the
response curves lean toward the lower frequencies, resulting in a softening response.
The more positive the nonlinearity, the higher is the shift of the peak value of the
magnification factor away from Q = 1 towards higher frequencies.

This is the hallmark of a hardening response. Increasing F results in a harder (for
positive 7) or a softer (for negative ) characteristic. As discussed later in this section,
the amplitude of the peak response is given by F/(2{), and as the excitation amplitude
is increased, this peak amplitude increases, and the corresponding response curve
leans further to the right (left) of Q=1 for positive (negative) .

The influence of damping on the magnification factor is illustrated in Figure 5.4.
The phase response of the Duffing oscillator is obtained from Equation (5.3.19) as

_ &
tangp = —3 (5.3.22)
o— 3 ?az
Phase-response curves are plotted in Figure 5.5 for the damping coefficients used in
Figure 5.4. As is evident from Equation (5.3.22), the nonlinearity affects the phase
response, which is now a function of the response amplitude; this dependence on the
response amplitude distorts the shape of the phase-response curve.

A profound difference between the responses of the linear oscillator and that of the
Duffing oscillator is that the response of the latter is multivalued; that is, for a fixed
value of the driving frequency there can be as many as three different response
amplitudes, as seen in Figures 5.3-5.5. This is a consequence of the fact that
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Figure 5.4 Amplitude-response curves: variation of the amplitude response with
respect to the excitation frequency for different values of the damping ratio C. The
parameter values used to construct these response curves are F=0.3, e=0.2 and
y=>5. The backbone curve is shown as a dotted line.
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Figure 5.5 Phase-response curves: variation of the phase response with respect to
the excitation frequency for different values of the damping ratio {. The parameter
values used to construct these response curves are F =0.3, e=0.2 and y =5.
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Equation (5.3.20) is a cubic equation in @*. Similar to the case of the linear oscillator,
the maximum value of the magnification factor can be found from

am a*M
E =0 and ﬁ <0 (5323&,1))

Differentiating Equation (5.3.20) with respect to Q yields

1 _ 5 _ da =2 Q-1 3a% *\ da
Q y 4 -
32¢? a(3pea” 8 8) (3”8 dQ ) (C ( & 8 dQ 0

(5.3.24)
which can be solved for da/dQ as
da 8a(3yea® — 8Q +8) (53.25)
dQ 27572244 — 9676(Q—1)a? + 64 (.9222 + (9—1)2)
This derivative vanishes (and so does dM/dQ) when
396a*—8Q+8 =0 = a, = 8(Qil) _,/2e=b (5.3.26a)
3¢y 3y

which on the basis of Equations (5.3.6) and (5.3.20) can be rewritten as

8ea 8¢ F
Y L L 5.3.26b
PNz 2 ( )

From Equations (5.3.26a) and (5.3.26b), it follows that

f(g_n \/8((2—1)
M, =2 VW (5.3.27a)
|F| |F| |F|
and
ap 1
= F =37 (5.3.27b)

respectively. Equation (5.3.26a) describes the so-called backbone curve, which is also
plotted in Figure 5.4. From Equations (5.3.26b) and (5.3.27b), it follows that the peak
amplitude and the associated magnification factor are independent of the strength of
the nonlinearity 7 (however, this is only true for weak nonlinearity. The peak
amplitude actually decreases for a hardening nonlinearity and increases for a
softening nonlinearity. This is discussed in more detail in [10]). This is evident in
Figure 5.3, where all of the peaks have the same magnitude for a fixed forcing
amplitude and constant damping ratio. However, the peak amplitude location that can
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be determined from Equation (5.3.26b) as

35 (F\’
O =g <ZZ) (5.3.27¢)
depends on the strength of the nonlinearity.

In Figure 5.6, a representative amplitude-response curve is shown to illustrate the
jump phenomenon. There is exactly one solution branch for Q < Q;,Q, < Q and
three coexisting solutions for Q; < Q < €, the so-called interval of bistability. At
the frequency location Q = Q; (Q = Q,), there are only two solutions S; and S
(S3 and Sy), since at this frequency location the two solution branches merge. At
Q = Q; and Q,, the periodic response of the forced Duffing oscillator loses stability,
leading to a jump in the response, as discussed later.

In Figure 5.7, a representative solution of the Duffing equation is shown for
specific initial conditions. As the harmonically forced oscillator is a second-order
nonautonomous system, there are trajectory crossings in the (y,y) plane. Although
there is a unique solution associated with any initial condition, for some system and
excitation parameter values, more than one solution satisfying Equation (5.3.3) can
exist; that is, trajectories initiated from different initial conditions can be attracted to
different solutions. Coexisting solutions are illustrated in Figure 5.8. These solutions
are marked as P and Q in Figure 5.6. To elucidate the importance of several coexisting
solutions, Figure 5.6 is revisited. Assume that an experiment is conducted. As the

allF|

Figure 5.6  Illustration of the jump phenomenon or hysteresis in the response of the
Duffing oscillator (5.3.3). The parameter values used to construct these response
curves are F =03, { =0.1, e=0.2 and 5 = 5. Phase plots corresponding to points P
and Q are shown in Figure 5.8.
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Figure 5.7 (a) System response in the (y,y,t) space and (b) the phase plot in the
(v,¥) plane for F =0.3, {=0.1, e =0.2, § =5 and Q= 1.2 over the time interval of
0 <t <30. The initial conditions are yo = 0.01, y, = 0.
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Figure 5.8 Phase plot of coexisting stable steady-state solutions in the (y,y) plane

for F=03,{=0.1,e=02 7=5 and Q=1.34.
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driving frequency —a natural control parameter —is gradually increased from Q < Q, in
a quasistatic manner, the response amplitude will follow the upper branch or the large
amplitude solution branch of the response diagram. Once , is reached, this large
amplitude forced vibration ceases to exist, and a fast (compared to the dominant
timescale of the system) transition takes place to the lower branch consisting of small
amplitude solutions; that is, a jump occurs from a large amplitude solution branch to a
small amplitude solution branch. As the driving frequency Q is further increased, the
response follows the small amplitude solution branch. If the driving frequency is now
slowly decreased from a frequency Q > €, the amplitude of the steady-state forced
response increases in accordance with the lower branch or the small-amplitude solution
branch. At Q = Q,, a transition occurs to a solution on the upper branch.

The transitions from the upper branch to the lower branch and vice versa occur at
different values of the driving frequency, and as a consequence, depending on how the
specific driving frequency is reached in the range of Q; < Q < €, the response is
different since it depends on the initial conditions; this phenomenon is called Aysteresis.

In a physical experiment, the middle solution branch (the branch that joins the
upper or large-amplitude solution branch and the lower or small amplitude solution
branch) is not observed. The solutions on this middle solution branch are unstable,
which means that if solutions on this middle branch are perturbed they will not return
to that solution, but will be attracted to another solution. In the following, the stability
of the solutions is examined.

To find the values of the critical points Q; and ), the authors utilise the fact that
these points correspond to vertical tangencies of the response curve; that is,
where dQ/dM = 0. This condition can be found by equating the denominator of
Equation (5.3.25) to zero, which translates to

2772620 —9676(Q—1)d? +64(3222 + (Q—1)2) =0 (5.3.28)

whose roots provide

Q) =

| =

(8 + 67ea® —¢\/ 9a4?2—6452) (5.3.29)

The condition for the existence of real solutions is

a> |2 (5.3.30)

The onset of bistability is characterised by the limiting case @ = /8(/(37). This
corresponds to Q; =Q, =1+2¢{, and the critical forcing amplitude
F— 8\/Z (T +27L+27) /3.

To characterise the stability of the solution branches depicted in Figure 5.6, the
stability properties of the fixed points (a,¢) of Equations (5.3.17) need to be
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understood. The Jacobian matrix of this flow is
- 3
- a (0— 3 ?a2>
= 5.3.31
J _ (O’— gf)jaz) ( )

=
a
whose trace tr J and determinant A are given by
trJ = —2¢,
_ 9 3 5.3.32a,b
A:C2+(a—§ya)(a—§ya) ( )

respectively. The trace is equal to the sum of the eigenvalues of the Jacobian matrix J,
while the determinant A is equal to the product of its eigenvalues.

For the damped system, the trace, and thus, the sum of the eigenvalues of the
Jacobian is negative, and therefore at least one of the eigenvalues has a negative real
part. If the other eigenvalue has a negative (positive) real part, then, the fixed point
(a, ¢) is a stable node (saddle point). Branches of stable and unstable fixed points are
shown as solid and dashed lines, respectively, in Figures 5.3, 5.4 and 5.6. If the other
eigenvalue becomes zero, the system undergoes a static bifurcation (i.e., saddle-node
or pitchfork bifurcation), but dynamic bifurcations such as Hopf bifurcations are not
possible, as also discussed in Chapter 3. The condition for having a zero eigenvalue
can be derived from Equations (5.3.32) and (5.3.20) (condition for the existence of a
fixed point and one of the eigenvalues of the Jacobian matrix is zero)

- () )
F? = (c + <a——ya )2>

This provides the following simple relationship between the system parameters at the
static bifurcation point

(5.3.33a,b)

_ 3
F~ = 34 (6—§?a2> (5.3.34)

Having explored the stability of the solutions, the domains of attraction for the
stable solutions are now discussed for the excitation parameter values corresponding to
which three solutions exist. Let the stable fixed points A and C of Equation (5.3.17a,b)
correspond to the upper branch and lower branch of solutions of Figure 5.6 for a certain
set of parameter values, and the unstable fixed point B correspond to the middle branch
of solutions for these parameter values. The unstable fixed point is a saddle point, and
there is a one-dimensional stable manifold W* associated with the eigenvalue with the
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negative real part and a one-dimensional unstable manifold W' associated with the
eigenvalue with the positive real part. It is noted that a stable manifold is tangent to the
eigenvector associated with the eigenvalue with the negative real part, and any trajectory
initiated on the stable manifold is attracted to B as ¢ — oo. An unstable manifold is
tangent to the eigenvector associated with the eigenvalue with the positive real part, and
any trajectory initiated on the unstable manifold is attracted to B as t — —oco. A
representative illustration of these manifolds is given in Figure 5.9 in the («, ¢) plane.

The stable manifold of B partitions this plane into two regions, which are the
basins of attraction of the stable fixed points A and C. Depending on the initial
conditions, the trajectories are attracted to either point A or C, as t — oo.

So far, the driving frequency has been considered as the control (bifurcation)
parameter. An alternative way to capture the dynamics of the system is to find the
amplitude of the response as the function of the amplitude of the driving force. The so-
called force-response curve is depicted in Figure 5.10. Here, again, multiple and up to
three coexisting solutions (the solid and dashed lines correspond to stable and
unstable branches, respectively) can be observed. As F is increased quasi-statically
and then decreased, a hysteresis phenomenon is seen as earlier noted in the context of
Figure 5.6. In particular, there are three coexisting solutions for F; < F < F», and
exactly one solution branch outside this region of bistability. The stable (thick solid
line) and unstable (thick dashed line) branches merge at F = F| and F = F,. At these
points there is a jump, labelled by a thin dashed line, in the response.

The qualitative change or bifurcation associated with the jump phenomenon is an
example of a catastrophic bifurcation (see, for example, [7]) since the states of the
system vary discontinuously as the control parameter is varied gradually through its
critical value. In the present case, the postbifurcation response is a bounded attractor,
to be specific, a periodic attractor. However, this may not be true in all situations. It is
noted that the jump phenomenon is related to the cusp catastrophe (see, for
example, [2]) which is one of many elementary catastrophes proposed nearly four

-0.2

Figure 5.9  Phase plane for Equation (5.3.17a,b) with three coexisting equilibrium
solutions. The stable manifold W° of the saddle point B separates the domains of

attraction of A and C. F=0.3, {=0.1, e=0.2, =5 and Q=1.2.
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Figure 5.10 Force-response curve for {=0.1, e=0.1, =1 and Q=1.2.

decades ago [11]. Holmes and Rand [12] were the first to apply catastrophe theory to
the Duffing oscillator.
Catastrophe theory is based on the behaviour of canonical functions of the form

Fom) =0 (5.3.35)

close to the singular or critical point y = 0 at the control parameter value = 0 of the
system. The fixed-point equations given by Equation (5.3.18a,b) are in the form of
Equation (5.3.35), and the jump location corresponds to a singular or critical point of
this system. The theory of singularities, which encompasses catastrophe theory, can
be used to understand the structural stability of bifurcations; that is, to understand
whether a certain bifurcation would be stable to a perturbation to the system. For
instance, this theory can be used to answer the question of whether the jump
phenomenon seen in Figure 5.10 would still persist if a perturbation in the form of
nonlinear viscous damping is added to the system described by Equation (5.3.7).

The analysis and numerical results discussed thus far are valid for a weakly
nonlinear system subjected to a soft forcing at a primary resonance (i.e., Q = 1) of the
system. Subsequently, the cases of secondary resonances are analysed.

5.3.2 Secondary resonances

Due to the cubic nonlinearity in the system there are also resonances at other
frequencies as mentioned earlier. These secondary resonances, occur at Q = 1/3 and
Q =3, which are different cases of the resonance relation Q = (1 — m)/n, where m and
n are integers such that |m| + |n| = 3. Weakly nonlinear analyses can also be carried
out to determine the system response as discussed in [2,7-9]. To illustrate this, the
following system is considered

J+e2ly+y+eyy’ = FeosQt (5.3.36)



